160 research outputs found

    Evolution of foot-and-mouth disease virus intra-sample sequence diversity during serial transmission in bovine hosts

    Get PDF
    RNA virus populations within samples are highly heterogeneous, containing a large number of minority sequence variants which can potentially be transmitted to other susceptible hosts. Consequently, consensus genome sequences provide an incomplete picture of the within- and between-host viral evolutionary dynamics during transmission. Foot-and-mouth disease virus (FMDV) is an RNA virus that can spread from primary sites of replication, via the systemic circulation, to found distinct sites of local infection at epithelial surfaces. Viral evolution in these different tissues occurs independently, each of them potentially providing a source of virus to seed subsequent transmission events. This study employed the Illumina Genome Analyzer platform to sequence 18 FMDV samples collected from a chain of sequentially infected cattle. These data generated snap-shots of the evolving viral population structures within different animals and tissues. Analyses of the mutation spectra revealed polymorphisms at frequencies >0.5% at between 21 and 146 sites across the genome for these samples, while 13 sites acquired mutations in excess of consensus frequency (50%). Analysis of polymorphism frequency revealed that a number of minority variants were transmitted during host-to-host infection events, while the size of the intra-host founder populations appeared to be smaller. These data indicate that viral population complexity is influenced by small intra-host bottlenecks and relatively large inter-host bottlenecks. The dynamics of minority variants are consistent with the actions of genetic drift rather than strong selection. These results provide novel insights into the evolution of FMDV that can be applied to reconstruct both intra- and inter-host transmission routes

    Estimating the protection afforded by foot-and-mouth disease vaccines in the laboratory

    Get PDF
    Foot-and-mouth disease (FMD) vaccines must be carefully selected and their application closely monitored to optimise their effectiveness. This review covers serological techniques for FMD vaccine quality control, including potency testing, vaccine matching and post-vaccination monitoring. It also discusses alternative laboratory procedures, such as antigen quantification and nucleotide sequencing, and briefly compares the approaches for FMD with those for measuring protection against influenza virus, where humoral immunity is also important. Serology is widely used to predict the protection afforded by vaccines and has great practical utility but also limitations. Animals differ in their responses to vaccines and in the protective mechanisms that they develop. Antibodies have a variety of properties and tests differ in what they measure. Antibody-virus interactions may vary between virus serotypes and strains and protection may be affected by the vaccination regime and the nature and timing of field virus challenge. Finally, tests employing biological reagents are difficult to standardise, whilst cross-protection data needed for test calibration and validation are scarce. All of this is difficult to reconcile with the desire for simple and universal criteria and thresholds for evaluating vaccines and vaccination responses and means that oversimplification of test procedures and their interpretation can lead to poor predictions. A holistic approach is therefore recommended, considering multiple sources of field, experimental and laboratory data. New antibody avidity and isotype tests seem promising alternatives to evaluate cross-protective, post-vaccination serological responses, taking account of vaccine potency as well as match. After choosing appropriate serological tests or test combinations and cut-offs, results should be interpreted cautiously and in context. Since opportunities for experimental challenge studies of cross-protection are limited and the approaches incompletely reflect real life, more field studies are needed to quantify cross-protection and its correlation to in vitro measurements

    Retrospective evaluation of foot-and-mouth disease vaccineeffectiveness in Turkey

    Get PDF
    AbstractFoot-and-mouth disease (FMD) is present in much of Turkey and its control is largely based on vaccination. The arrival of the FMD Asia-1 serotype in Turkey in 2011 caused particular concern, spreading rapidly westwards across the country towards the FMD free European Union. With no prior natural immunity, control of spread would rely heavily on vaccination.Unlike human vaccines, field protection is rarely evaluated directly for FMD vaccines. Between September 2011 and July 2012 we performed four retrospective outbreak investigations to assess the vaccine effectiveness (VE) of FMD Asia-1 vaccines in Turkey. Vaccine effectiveness is defined as the reduction in risk in vaccinated compared to unvaccinated individuals with similar virus exposure in the field.The four investigations included 12 villages and 1230 cattle >4 months of age. One investigation assessed the FMD Asia-1 Shamir vaccine, the other three evaluated the recently introduced FMD Asia-1 TUR 11 vaccine made using a field isolate of the FMD Asia-1 Sindh-08 lineage that had recently entered Turkey.After adjustment for confounding, the TUR 11 vaccine provided moderate protection against both clinical disease VE=69% [95% CI: 50%–81%] and infection VE=63% [95% CI: 29%–81%]. However, protection was variable with some herds with high vaccine coverage still experiencing high disease incidence. Some of this variability will be the result of the variation in virus challenge and immunity that occurs under field conditions.In the outbreak investigated there was no evidence that the Asia-1 Shamir vaccine provided adequate protection against clinical FMD with an incidence of 89% in single vaccinated cattle and 69% in those vaccinated two to five times.Based on these effectiveness estimates, vaccination alone is unlikely to produce the high levels of herd immunity needed to control FMD without additional control measures

    Supersymmetric Regularization, Two-Loop QCD Amplitudes and Coupling Shifts

    Get PDF
    We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for "observed" particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg to gg) in supersymmetric QCD. These results also cross-check recent non-trivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard MS-bar coupling, alpha_s. The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD beta function in the FDH and dimensional reduction schemes.Comment: 44 pages, minor corrections and clarifications include
    • …
    corecore